Score: 0

Pattern Recognition of Aluminium Arbitrage in Global Trade Data

Published: December 16, 2025 | arXiv ID: 2512.14410v1

By: Muhammad Sukri Bin Ramli

As the global economy transitions toward decarbonization, the aluminium sector has become a focal point for strategic resource management. While policies such as the Carbon Border Adjustment Mechanism (CBAM) aim to reduce emissions, they have inadvertently widened the price arbitrage between primary metal, scrap, and semi-finished goods, creating new incentives for market optimization. This study presents a unified, unsupervised machine learning framework to detect and classify emerging trade anomalies within UN Comtrade data (2020 to 2024). Moving beyond traditional rule-based monitoring, we apply a four-layer analytical pipeline utilizing Forensic Statistics, Isolation Forests, Network Science, and Deep Autoencoders. Contrary to the hypothesis that Sustainability Arbitrage would be the primary driver, empirical results reveal a contradictory and more severe phenomenon of Hardware Masking. Illicit actors exploit bi-directional tariff incentives by misclassifying scrap as high-count heterogeneous goods to justify extreme unit-price outliers of >$160/kg, a 1,900% markup indicative of Trade-Based Money Laundering (TBML) rather than commercial arbitrage. Topologically, risk is not concentrated in major exporters but in high-centrality Shadow Hubs that function as pivotal nodes for illicit rerouting. These actors execute a strategy of Void-Shoring, systematically suppressing destination data to Unspecified Code to fracture mirror statistics and sever forensic trails. Validated by SHAP (Shapley Additive Explanations), the results confirm that price deviation is the dominant predictor of anomalies, necessitating a paradigm shift in customs enforcement from physical volume checks to dynamic, algorithmic valuation auditing.

Category
Economics:
General Economics