A Graph-Based Forensic Framework for Inferring Hardware Noise of Cloud Quantum Backend
By: Subrata Das, Archisman Ghosh, Swaroop Ghosh
Potential Business Impact:
Checks if quantum computers cheat with their errors.
Cloud quantum platforms give users access to many backends with different qubit technologies, coupling layouts, and noise levels. The execution of a circuit, however, depends on internal allocation and routing policies that are not observable to the user. A provider may redirect jobs to more error-prone regions to conserve resources, balance load or for other opaque reasons, causing degradation in fidelity while still presenting stale or averaged calibration data. This lack of transparency creates a security gap: users cannot verify whether their circuits were executed on the hardware for which they were charged. Forensic methods that infer backend behavior from user-visible artifacts are therefore becoming essential. In this work, we introduce a Graph Neural Network (GNN)-based forensic framework that predicts per-qubit and per-qubit link error rates of an unseen backend using only topology information and aggregated features extracted from transpiled circuits. We construct a dataset from several IBM 27-qubit devices, merge static calibration features with dynamic transpilation features and train separate GNN regressors for one- and two-qubit errors. At inference time, the model operates without access to calibration data from the target backend and reconstructs a complete error map from the features available to the user. Our results on the target backend show accurate recovery of backend error rate, with an average mismatch of approximately 22% for single-qubit errors and 18% for qubit-link errors. The model also exhibits strong ranking agreement, with the ordering induced by predicted error values closely matching that of the actual calibration errors, as reflected by high Spearman correlation. The framework consistently identifies weak links and high-noise qubits and remains robust under realistic temporal noise drift.
Similar Papers
Graph Neural Network-Based Predictor for Optimal Quantum Hardware Selection
Quantum Physics
Finds best computer for quantum tasks.
Graph Neural Network-Based Predictor for Optimal Quantum Hardware Selection
Quantum Physics
Finds best computer for quantum tasks.
Graph-Based Bayesian Optimization for Quantum Circuit Architecture Search with Uncertainty Calibrated Surrogates
Quantum Physics
Finds better quantum computer programs for AI.