Score: 0

Asymptotic Inference for Rank Correlations

Published: December 16, 2025 | arXiv ID: 2512.14609v1

By: Marc-Oliver Pohle, Jan-Lukas Wermuth, Christian H. Weiß

Kendall's tau and Spearman's rho are widely used tools for measuring dependence. Surprisingly, when it comes to asymptotic inference for these rank correlations, some fundamental results and methods have not yet been developed, in particular for discrete random variables and in the time series case, and concerning variance estimation in general. Consequently, asymptotic confidence intervals are not available. We provide a comprehensive treatment of asymptotic inference for classical rank correlations, including Kendall's tau, Spearman's rho, Goodman-Kruskal's gamma, Kendall's tau-b, and grade correlation. We derive asymptotic distributions for both iid and time series data, resorting to asymptotic results for U-statistics, and introduce consistent variance estimators. This enables the construction of confidence intervals and tests, generalizes classical results for continuous random variables and leads to corrected versions of widely used tests of independence. We analyze the finite-sample performance of our variance estimators, confidence intervals, and tests in simulations and illustrate their use in case studies.

Category
Statistics:
Methodology