Score: 0

Adapting Speech Language Model to Singing Voice Synthesis

Published: December 16, 2025 | arXiv ID: 2512.14657v1

By: Yiwen Zhao , Jiatong Shi , Jinchuan Tian and more

Speech Language Models (SLMs) have recently emerged as a unified paradigm for addressing a wide range of speech-related tasks, including text-to-speech (TTS), speech enhancement (SE), and automatic speech recognition (ASR). However, the generalization capability of large-scale pre-trained SLMs remains underexplored. In this work, we adapt a 1.7B parameter TTS pretrained SLM for singing voice synthesis (SVS), using only a 135-hour synthetic singing corpus, ACE-Opencpop. Building upon the ESPNet-SpeechLM, our recipe involves the following procedure: (1) tokenization of music score conditions and singing waveforms, (2) multi-stream language model token prediction, (3) conditional flow matching-based mel-spectrogram generation. (4) a mel-to-wave vocoder. Experimental results demonstrate that our adapted SLM generalizes well to SVS and achieves performance comparable to leading discrete token-based SVS models.

Category
Computer Science:
Sound