How Many Heads Make an SSM? A Unified Framework for Attention and State Space Models
By: Ali Ghodsi
Sequence modeling has produced diverse architectures -- from classical recurrent neural networks to modern Transformers and state space models (SSMs) -- yet a unified theoretical understanding of expressivity and trainability trade-offs remains limited. We introduce a unified framework that represents a broad class of sequence maps via an input-dependent effective interaction operator $W_{ij}(X)$, making explicit two recurring construction patterns: (i) the Unified Factorized Framework (Explicit) (attention-style mixing), in which $W_{ij}(X)$ varies through scalar coefficients applied to shared value maps, and (ii) Structured Dynamics (Implicit) (state-space recurrences), in which $W_{ij}$ is induced by a latent dynamical system. Using this framework, we derive three theoretical results. First, we establish the Interaction Rank Gap: models in the Unified Factorized Framework, such as single-head attention, are constrained to a low-dimensional operator span and cannot represent certain structured dynamical maps. Second, we prove an Equivalence (Head-Count) Theorem showing that, within our multi-head factorized class, representing a linear SSM whose lag operators span a $k$-dimensional subspace on length-$n$ sequences requires and is achievable with $H=k$ heads. Third, we prove a Gradient Highway Result, showing that attention layers admit inputs with distance-independent gradient paths, whereas stable linear dynamics exhibit distance-dependent gradient attenuation. Together, these results formalize a fundamental trade-off between algebraic expressivity (interaction/operator span) and long-range gradient propagation, providing theoretical grounding for modern sequence architecture design.
Similar Papers
The Curious Case of In-Training Compression of State Space Models
Machine Learning (CS)
Shrinks computer models during learning for speed.
From S4 to Mamba: A Comprehensive Survey on Structured State Space Models
Machine Learning (CS)
Makes computers understand long stories faster.
Design Principles for Sequence Models via Coefficient Dynamics
Machine Learning (CS)
Unifies computer models for better predictions.