Score: 0

Intent-Driven UAM Rescheduling

Published: December 17, 2025 | arXiv ID: 2512.15462v1

By: Jeongseok Kim, Kangjin Kim

Due to the restricted resources, efficient scheduling in vertiports has received much more attention in the field of Urban Air Mobility (UAM). For the scheduling problem, we utilize a Mixed Integer Linear Programming (MILP), which is often formulated in a resource-restricted project scheduling problem (RCPSP). In this paper, we show our approach to handle both dynamic operation requirements and vague rescheduling requests from humans. Particularly, we utilize a three-valued logic for interpreting ambiguous user intents and a decision tree, proposing a newly integrated system that combines Answer Set Programming (ASP) and MILP. This integrated framework optimizes schedules and supports human inputs transparently. With this system, we provide a robust structure for explainable, adaptive UAM scheduling.

Category
Computer Science:
Artificial Intelligence