Score: 0

Data-driven controlled subgroup selection in clinical trials

Published: December 17, 2025 | arXiv ID: 2512.15676v1

By: Manuel M. Müller , Björn Bornkamp , Frank Bretz and more

Subgroup selection in clinical trials is essential for identifying patient groups that react differently to a treatment, thereby enabling personalised medicine. In particular, subgroup selection can identify patient groups that respond particularly well to a treatment or that encounter adverse events more often. However, this is a post-selection inference problem, which may pose challenges for traditional techniques used for subgroup analysis, such as increased Type I error rates and potential biases from data-driven subgroup identification. In this paper, we present two methods for subgroup selection in regression problems: one based on generalised linear modelling and another on isotonic regression. We demonstrate how these methods can be used for data-driven subgroup identification in the analysis of clinical trials, focusing on two distinct tasks: identifying patient groups that are safe from manifesting adverse events and identifying patient groups with high treatment effect, while controlling for Type I error in both cases. A thorough simulation study is conducted to evaluate the strengths and weaknesses of each method, providing detailed insight into the sensitivity of the Type I error rate control to modelling assumptions.

Category
Statistics:
Methodology