Score: 0

High-Dimensional Partial Least Squares: Spectral Analysis and Fundamental Limitations

Published: December 17, 2025 | arXiv ID: 2512.15684v1

By: Victor Léger, Florent Chatelain

Partial Least Squares (PLS) is a widely used method for data integration, designed to extract latent components shared across paired high-dimensional datasets. Despite decades of practical success, a precise theoretical understanding of its behavior in high-dimensional regimes remains limited. In this paper, we study a data integration model in which two high-dimensional data matrices share a low-rank common latent structure while also containing individual-specific components. We analyze the singular vectors of the associated cross-covariance matrix using tools from random matrix theory and derive asymptotic characterizations of the alignment between estimated and true latent directions. These results provide a quantitative explanation of the reconstruction performance of the PLS variant based on Singular Value Decomposition (PLS-SVD) and identify regimes where the method exhibits counter-intuitive or limiting behavior. Building on this analysis, we compare PLS-SVD with principal component analysis applied separately to each dataset and show its asymptotic superiority in detecting the common latent subspace. Overall, our results offer a comprehensive theoretical understanding of high-dimensional PLS-SVD, clarifying both its advantages and fundamental limitations.

Category
Statistics:
Machine Learning (Stat)