Score: 0

SWIFT-Nav: Stability-Aware Waypoint-Level TD3 with Fuzzy Arbitration for UAV Navigation in Cluttered Environments

Published: December 17, 2025 | arXiv ID: 2512.16027v1

By: Shuaidong Ji, Mahdi Bamdad, Francisco Cruz

Efficient and reliable UAV navigation in cluttered and dynamic environments remains challenging. We propose SWIFT-Nav: Stability-aware Waypoint-level Integration of Fuzzy arbitration and TD3 for Navigation, a TD3-based navigation framework that achieves fast, stable convergence to obstacle-aware paths. The system couples a sensor-driven perception front end with a TD3 waypoint policy: the perception module converts LiDAR ranges into a confidence-weighted safety map and goal cues, while the TD3 policy is trained with Prioritised Experience Replay to focus on high-error transitions and a decaying epsilon-greedy exploration schedule that gradually shifts from exploration to exploitation. A lightweight fuzzy-logic layer computes a safety score from radial measurements and near obstacles, gates mode switching and clamps unsafe actions; in parallel, task-aligned reward shaping combining goal progress, clearance, and switch-economy terms provides dense, well-scaled feedback that accelerates learning. Implemented in Webots with proximity-based collision checking, our approach consistently outperforms baselines in trajectory smoothness and generalization to unseen layouts, while preserving real-time responsiveness. These results show that combining TD3 with replay prioritisation, calibrated exploration, and fuzzy-safety rules yields a robust and deployable solution for UAV navigation in cluttered scenes.

Category
Computer Science:
Robotics