Explicit and Non-asymptotic Query Complexities of Rank-Based Zeroth-order Algorithms on Smooth Functions
By: Haishan Ye
Rank-based zeroth-order (ZO) optimization -- which relies only on the ordering of function evaluations -- offers strong robustness to noise and monotone transformations, and underlies many successful algorithms such as CMA-ES, natural evolution strategies, and rank-based genetic algorithms. Despite its widespread use, the theoretical understanding of rank-based ZO methods remains limited: existing analyses provide only asymptotic insights and do not yield explicit convergence rates for algorithms selecting the top-$k$ directions. This work closes this gap by analyzing a simple rank-based ZO algorithm and establishing the first \emph{explicit}, and \emph{non-asymptotic} query complexities. For a $d$-dimension problem, if the function is $L$-smooth and $μ$-strongly convex, the algorithm achieves $\widetilde{\mathcal O}\!\left(\frac{dL}μ\log\!\frac{dL}{μδ}\log\!\frac{1}{\varepsilon}\right)$ to find an $\varepsilon$-suboptimal solution, and for smooth nonconvex objectives it reaches $\mathcal O\!\left(\frac{dL}{\varepsilon}\log\!\frac{1}{\varepsilon}\right)$. Notation $\cO(\cdot)$ hides constant terms and $\widetilde{\mathcal O}(\cdot)$ hides extra $\log\log\frac{1}{\varepsilon}$ term. These query complexities hold with a probability at least $1-δ$ with $0<δ<1$. The analysis in this paper is novel and avoids classical drift and information-geometric techniques. Our analysis offers new insight into why rank-based heuristics lead to efficient ZO optimization.
Similar Papers
Query-Efficient Zeroth-Order Algorithms for Nonconvex Optimization
Optimization and Control
Finds best answers with fewer guesses.
The Multi-Query Paradox in Zeroth-Order Optimization
Machine Learning (CS)
Finds best way to guess answers to hard problems.
Minimisation of Quasar-Convex Functions Using Random Zeroth-Order Oracles
Optimization and Control
Helps computers find best answers faster.