Generalized Hamming weights of additive codes and geometric counterparts
By: Jozefien D'haeseleer, Sascha Kurz
We consider the geometric problem of determining the maximum number $n_q(r,h,f;s)$ of $(h-1)$-spaces in the projective space $\operatorname{PG}(r-1,q)$ such that each subspace of codimension $f$ does contain at most $s$ elements. In coding theory terms we are dealing with additive codes that have a large $f$th generalized Hamming weight. We also consider the dual problem of the minimum number $b_q(r,h,f;s)$ of $(h-1)$-spaces in $\operatorname{PG}(r-1,q)$ such that each subspace of codimension $f$ contains at least $s$ elements. We fully determine $b_2(5,2,2;s)$ as a function of $s$. We additionally give bounds and constructions for other parameters.
Similar Papers
Generalized ovals, 2.5-dimensional additive codes, and multispreads
Combinatorics
Finds more ways to send secret messages safely.
Cartesian square-free codes
Information Theory
Makes secret codes stronger and easier to break.
Linear codes over $\frac{\mathbb{F}_q[u]}{\langle u^2 \rangle}$ with mixed-alphabet defining sets and their Gray images: Constructions of projective few-weight, distance-optimal and minimal codes
Information Theory
Creates better codes for secret messages and sharing.