Score: 0

Locally Correct Interleavings between Merge Trees

Published: December 18, 2025 | arXiv ID: 2512.16474v1

By: Thijs Beurskens , Tim Ophelders , Bettina Speckmann and more

Potential Business Impact:

Compares changing landscapes by finding similar patterns.

Business Areas:
Mapping Services Navigation and Mapping

Temporal sequences of terrains arise in various application areas. To analyze them efficiently, one generally needs a suitable abstraction of the data as well as a method to compare and match them over time. In this paper we consider merge trees as a topological descriptor for terrains and the interleaving distance as a method to match and compare them. An interleaving between two merge trees consists of two maps, one in each direction. These maps must satisfy ancestor relations and hence introduce a ''shift'' between points and their image. An optimal interleaving minimizes the maximum shift; the interleaving distance is the value of this shift. However, to study the evolution of merge trees over time, we need not only a number but also a meaningful matching between the two trees. The two maps of an optimal interleaving induce a matching, but due to the bottleneck nature of the interleaving distance, this matching fails to capture local similarities between the trees. In this paper we hence propose a notion of local optimality for interleavings. To do so, we define the residual interleaving distance, a generalization of the interleaving distance that allows additional constraints on the maps. This allows us to define locally correct interleavings, which use a range of shifts across the two merge trees that reflect the local similarity well. We give a constructive proof that a locally correct interleaving always exists.

Page Count
24 pages

Category
Computer Science:
Computational Geometry