Score: 1

Generative Adversarial Reasoner: Enhancing LLM Reasoning with Adversarial Reinforcement Learning

Published: December 18, 2025 | arXiv ID: 2512.16917v1

By: Qihao Liu , Luoxin Ye , Wufei Ma and more

BigTech Affiliations: Johns Hopkins University

Potential Business Impact:

Teaches computers to solve math problems correctly.

Business Areas:
Machine Learning Artificial Intelligence, Data and Analytics, Software

Large language models (LLMs) with explicit reasoning capabilities excel at mathematical reasoning yet still commit process errors, such as incorrect calculations, brittle logic, and superficially plausible but invalid steps. In this paper, we introduce Generative Adversarial Reasoner, an on-policy joint training framework designed to enhance reasoning by co-evolving an LLM reasoner and an LLM-based discriminator through adversarial reinforcement learning. A compute-efficient review schedule partitions each reasoning chain into logically complete slices of comparable length, and the discriminator evaluates each slice's soundness with concise, structured justifications. Learning couples complementary signals: the LLM reasoner is rewarded for logically consistent steps that yield correct answers, while the discriminator earns rewards for correctly detecting errors or distinguishing traces in the reasoning process. This produces dense, well-calibrated, on-policy step-level rewards that supplement sparse exact-match signals, improving credit assignment, increasing sample efficiency, and enhancing overall reasoning quality of LLMs. Across various mathematical benchmarks, the method delivers consistent gains over strong baselines with standard RL post-training. Specifically, on AIME24, we improve DeepSeek-R1-Distill-Qwen-7B from 54.0 to 61.3 (+7.3) and DeepSeek-R1-Distill-Llama-8B from 43.7 to 53.7 (+10.0). The modular discriminator also enables flexible reward shaping for objectives such as teacher distillation, preference alignment, and mathematical proof-based reasoning.

Country of Origin
🇺🇸 United States

Page Count
17 pages

Category
Computer Science:
Artificial Intelligence