Score: 0

Quantum-enhanced Information Retrieval from Reflective Intelligent Surfaces

Published: December 19, 2025 | arXiv ID: 2512.17199v1

By: Shiqian Guo, Tingxiang Ji, Jianqing Liu

Information retrieval from passive backscatter systems is widely used in digital applications with tight energy budgets, short communication distances, and low data rates. Due to the fundamental limits of classical wireless receivers, the achievable data rate cannot be increased without compromising either energy efficiency or communication range, thereby hindering the broader adoption of this technology. In this work, we present a novel time-resolving quantum receiver combined with a multi-mode probing signal to extract large-alphabet information modulated by a passive reconfigurable intelligent surface (RIS). The adaptive nature of the proposed receiver yields significant quantum advantages over classical receivers without relying on complex or fragile quantum resources such as entanglement. Simulation results show that the proposed technique surpasses the classical standard quantum limit (SQL) for modulation sizes up to M = 2^8, meanwhile halving the probing energy or increasing the communication distance by a factor of 1.41.

Category
Physics:
Quantum Physics