Score: 0

The Mental World of Large Language Models in Recommendation: A Benchmark on Association, Personalization, and Knowledgeability

Published: December 19, 2025 | arXiv ID: 2512.17389v1

By: Guangneng Hu

Large language models (LLMs) have shown potential in recommendation systems (RecSys) by using them as either knowledge enhancer or zero-shot ranker. A key challenge lies in the large semantic gap between LLMs and RecSys where the former internalizes language world knowledge while the latter captures personalized world of behaviors. Unfortunately, the research community lacks a comprehensive benchmark that evaluates the LLMs over their limitations and boundaries in RecSys so that we can draw a confident conclusion. To investigate this, we propose a benchmark named LRWorld containing over 38K high-quality samples and 23M tokens carefully compiled and generated from widely used public recommendation datasets. LRWorld categorizes the mental world of LLMs in RecSys as three main scales (association, personalization, and knowledgeability) spanned by ten factors with 31 measures (tasks). Based on LRWorld, comprehensive experiments on dozens of LLMs show that they are still not well capturing the deep neural personalized embeddings but can achieve good results on shallow memory-based item-item similarity. They are also good at perceiving item entity relations, entity hierarchical taxonomies, and item-item association rules when inferring user interests. Furthermore, LLMs show a promising ability in multimodal knowledge reasoning (movie poster and product image) and robustness to noisy profiles. None of them show consistently good performance over the ten factors. Model sizes, position bias, and more are ablated.

Category
Computer Science:
Information Retrieval