Score: 0

Alternating Direction Method of Multipliers for Nonlinear Matrix Decompositions

Published: December 19, 2025 | arXiv ID: 2512.17473v1

By: Atharva Awari, Nicolas Gillis, Arnaud Vandaele

We present an algorithm based on the alternating direction method of multipliers (ADMM) for solving nonlinear matrix decompositions (NMD). Given an input matrix $X \in \mathbb{R}^{m \times n}$ and a factorization rank $r \ll \min(m, n)$, NMD seeks matrices $W \in \mathbb{R}^{m \times r}$ and $H \in \mathbb{R}^{r \times n}$ such that $X \approx f(WH)$, where $f$ is an element-wise nonlinear function. We evaluate our method on several representative nonlinear models: the rectified linear unit activation $f(x) = \max(0, x)$, suitable for nonnegative sparse data approximation, the component-wise square $f(x) = x^2$, applicable to probabilistic circuit representation, and the MinMax transform $f(x) = \min(b, \max(a, x))$, relevant for recommender systems. The proposed framework flexibly supports diverse loss functions, including least squares, $\ell_1$ norm, and the Kullback-Leibler divergence, and can be readily extended to other nonlinearities and metrics. We illustrate the applicability, efficiency, and adaptability of the approach on real-world datasets, highlighting its potential for a broad range of applications.

Category
Electrical Engineering and Systems Science:
Signal Processing