Semi-Supervised 3D Segmentation for Type-B Aortic Dissection with Slim UNETR
By: Denis Mikhailapov, Vladimir Berikov
Convolutional neural networks (CNN) for multi-class segmentation of medical images are widely used today. Especially models with multiple outputs that can separately predict segmentation classes (regions) without relying on a probabilistic formulation of the segmentation of regions. These models allow for more precise segmentation by tailoring the network's components to each class (region). They have a common encoder part of the architecture but branch out at the output layers, leading to improved accuracy. These methods are used to diagnose type B aortic dissection (TBAD), which requires accurate segmentation of aortic structures based on the ImageTBDA dataset, which contains 100 3D computed tomography angiography (CTA) images. These images identify three key classes: true lumen (TL), false lumen (FL), and false lumen thrombus (FLT) of the aorta, which is critical for diagnosis and treatment decisions. In the dataset, 68 examples have a false lumen, while the remaining 32 do not, creating additional complexity for pathology detection. However, implementing these CNN methods requires a large amount of high-quality labeled data. Obtaining accurate labels for the regions of interest can be an expensive and time-consuming process, particularly for 3D data. Semi-supervised learning methods allow models to be trained by using both labeled and unlabeled data, which is a promising approach for overcoming the challenge of obtaining accurate labels. However, these learning methods are not well understood for models with multiple outputs. This paper presents a semi-supervised learning method for models with multiple outputs. The method is based on the additional rotations and flipping, and does not assume the probabilistic nature of the model's responses. This makes it a universal approach, which is especially important for architectures that involve separate segmentation.
Similar Papers
Enhancing Dual Network Based Semi-Supervised Medical Image Segmentation with Uncertainty-Guided Pseudo-Labeling
CV and Pattern Recognition
Helps doctors find diseases with fewer scans.
Towards Label-Free Brain Tumor Segmentation: Unsupervised Learning with Multimodal MRI
CV and Pattern Recognition
Finds brain tumors without needing doctor's notes.
DADU: Dual Attention-based Deep Supervised UNet for Automated Semantic Segmentation of Cardiac Images
Image and Video Processing
Finds heart problems in scans better.