Score: 0

Long-Range depth estimation using learning based Hybrid Distortion Model for CCTV cameras

Published: December 19, 2025 | arXiv ID: 2512.17784v1

By: Ami Pandat , Punna Rajasekhar , G. Aravamuthan and more

Accurate camera models are essential for photogrammetry applications such as 3D mapping and object localization, particularly for long distances. Various stereo-camera based 3D localization methods are available but are limited to few hundreds of meters' range. This is majorly due to the limitation of the distortion models assumed for the non-linearities present in the camera lens. This paper presents a framework for modeling a suitable distortion model that can be used for localizing the objects at longer distances. It is well known that neural networks can be a better alternative to model a highly complex non-linear lens distortion function; on contrary, it is observed that a direct application of neural networks to distortion models fails to converge to estimate the camera parameters. To resolve this, a hybrid approach is presented in this paper where the conventional distortion models are initially extended to incorporate higher-order terms and then enhanced using neural network based residual correction model. This hybrid approach has substantially improved long-range localization performance and is capable of estimating the 3D position of objects at distances up to 5 kilometres. The estimated 3D coordinates are transformed to GIS coordinates and are plotted on a GIS map for visualization. Experimental validation demonstrates the robustness and effectiveness of proposed framework, offering a practical solution to calibrate CCTV cameras for long-range photogrammetry applications.

Category
Computer Science:
CV and Pattern Recognition