Score: 0

Towards Sharp Minimax Risk Bounds for Operator Learning

Published: December 19, 2025 | arXiv ID: 2512.17805v1

By: Ben Adcock, Gregor Maier, Rahul Parhi

We develop a minimax theory for operator learning, where the goal is to estimate an unknown operator between separable Hilbert spaces from finitely many noisy input-output samples. For uniformly bounded Lipschitz operators, we prove information-theoretic lower bounds together with matching or near-matching upper bounds, covering both fixed and random designs under Hilbert-valued Gaussian noise and Gaussian white noise errors. The rates are controlled by the spectrum of the covariance operator of the measure that defines the error metric. Our setup is very general and allows for measures with unbounded support. A key implication is a curse of sample complexity which shows that the minimax risk for generic Lipschitz operators cannot decay at any algebraic rate in the sample size. We obtain essentially sharp characterizations when the covariance spectrum decays exponentially and provide general upper and lower bounds in slower-decay regimes.

Category
Mathematics:
Statistics Theory