Score: 0

Factorized Transport Alignment for Multimodal and Multiview E-commerce Representation Learning

Published: December 19, 2025 | arXiv ID: 2512.18117v1

By: Xiwen Chen , Yen-Chieh Lien , Susan Liu and more

The rapid growth of e-commerce requires robust multimodal representations that capture diverse signals from user-generated listings. Existing vision-language models (VLMs) typically align titles with primary images, i.e., single-view, but overlook non-primary images and auxiliary textual views that provide critical semantics in open marketplaces such as Etsy or Poshmark. To this end, we propose a framework that unifies multimodal and multi-view learning through Factorized Transport, a lightweight approximation of optimal transport, designed for scalability and deployment efficiency. During training, the method emphasizes primary views while stochastically sampling auxiliary ones, reducing training cost from quadratic in the number of views to constant per item. At inference, all views are fused into a single cached embedding, preserving the efficiency of two-tower retrieval with no additional online overhead. On an industrial dataset of 1M product listings and 0.3M interactions, our approach delivers consistent improvements in cross-view and query-to-item retrieval, achieving up to +7.9% Recall@500 over strong multimodal baselines. Overall, our framework bridges scalability with optimal transport-based learning, making multi-view pretraining practical for large-scale e-commerce search.

Category
Computer Science:
Information Retrieval