Score: 0

TraCeR: Transformer-Based Competing Risk Analysis with Longitudinal Covariates

Published: December 19, 2025 | arXiv ID: 2512.18129v1

By: Maxmillan Ries, Sohan Seth

Survival analysis is a critical tool for modeling time-to-event data. Recent deep learning-based models have reduced various modeling assumptions including proportional hazard and linearity. However, a persistent challenge remains in incorporating longitudinal covariates, with prior work largely focusing on cross-sectional features, and in assessing calibration of these models, with research primarily focusing on discrimination during evaluation. We introduce TraCeR, a transformer-based survival analysis framework for incorporating longitudinal covariates. Based on a factorized self-attention architecture, TraCeR estimates the hazard function from a sequence of measurements, naturally capturing temporal covariate interactions without assumptions about the underlying data-generating process. The framework is inherently designed to handle censored data and competing events. Experiments on multiple real-world datasets demonstrate that TraCeR achieves substantial and statistically significant performance improvements over state-of-the-art methods. Furthermore, our evaluation extends beyond discrimination metrics and assesses model calibration, addressing a key oversight in literature.

Category
Computer Science:
Machine Learning (CS)