Score: 0

Multifaceted Exploration of Spatial Openness in Rental Housing: A Big Data Analysis in Tokyo's 23 Wards

Published: December 20, 2025 | arXiv ID: 2512.18226v1

By: Takuya OKi, Yuan Liu

Understanding spatial openness is vital for improving residential quality and design; however, studies often treat its influencing factors separately. This study developed a quantitative framework to evaluate the spatial openness in housing from two- (2D) and three- (3D) dimensional perspectives. Using data from 4,004 rental units in Tokyo's 23 wards, we examined the temporal and spatial variations in openness and its relationship with rent and housing attributes. 2D openness was computed via planar visibility using visibility graph analysis (VGA) from floor plans, whereas 3D openness was derived from interior images analysed using Mask2Former, a semantic segmentation model that identifies walls, ceilings, floors, and windows. The results showed an increase in living room visibility and a 1990s peak in overall openness. Spatial analyses revealed partial correlations among openness, rent, and building characteristics, reflecting urban redevelopment trends. Although the 2D and 3D openness indicators were not directly correlated, higher openness tended to correspond to higher rent. The impression scores predicted by the existing models were only weakly related to openness, suggesting that the interior design and furniture more strongly shape perceived space. This study offers a new multidimensional data-driven framework for quantifying residential spatial openness and linking it with urban and market dynamics.

Category
Computer Science:
CV and Pattern Recognition