Breaking Minds, Breaking Systems: Jailbreaking Large Language Models via Human-like Psychological Manipulation
By: Zehao Liu, Xi Lin
Large Language Models (LLMs) have gained considerable popularity and protected by increasingly sophisticated safety mechanisms. However, jailbreak attacks continue to pose a critical security threat by inducing models to generate policy-violating behaviors. Current paradigms focus on input-level anomalies, overlooking that the model's internal psychometric state can be systematically manipulated. To address this, we introduce Psychological Jailbreak, a new jailbreak attack paradigm that exposes a stateful psychological attack surface in LLMs, where attackers exploit the manipulation of a model's psychological state across interactions. Building on this insight, we propose Human-like Psychological Manipulation (HPM), a black-box jailbreak method that dynamically profiles a target model's latent psychological vulnerabilities and synthesizes tailored multi-turn attack strategies. By leveraging the model's optimization for anthropomorphic consistency, HPM creates a psychological pressure where social compliance overrides safety constraints. To systematically measure psychological safety, we construct an evaluation framework incorporating psychometric datasets and the Policy Corruption Score (PCS). Benchmarking against various models (e.g., GPT-4o, DeepSeek-V3, Gemini-2-Flash), HPM achieves a mean Attack Success Rate (ASR) of 88.1%, outperforming state-of-the-art attack baselines. Our experiments demonstrate robust penetration against advanced defenses, including adversarial prompt optimization (e.g., RPO) and cognitive interventions (e.g., Self-Reminder). Ultimately, PCS analysis confirms HPM induces safety breakdown to satisfy manipulated contexts. Our work advocates for a fundamental paradigm shift from static content filtering to psychological safety, prioritizing the development of psychological defense mechanisms against deep cognitive manipulation.
Similar Papers
Uncovering the Persuasive Fingerprint of LLMs in Jailbreaking Attacks
Computation and Language
Makes AI more likely to follow bad instructions.
Defending Large Language Models Against Jailbreak Exploits with Responsible AI Considerations
Cryptography and Security
Stops AI from saying bad or unsafe things.
Harmful Prompt Laundering: Jailbreaking LLMs with Abductive Styles and Symbolic Encoding
Artificial Intelligence
Makes AI assistants ignore bad requests.