Score: 0

AL-GNN: Privacy-Preserving and Replay-Free Continual Graph Learning via Analytic Learning

Published: December 20, 2025 | arXiv ID: 2512.18295v1

By: Xuling Zhang , Jindong Li , Yifei Zhang and more

Continual graph learning (CGL) aims to enable graph neural networks to incrementally learn from a stream of graph structured data without forgetting previously acquired knowledge. Existing methods particularly those based on experience replay typically store and revisit past graph data to mitigate catastrophic forgetting. However, these approaches pose significant limitations, including privacy concerns, inefficiency. In this work, we propose AL GNN, a novel framework for continual graph learning that eliminates the need for backpropagation and replay buffers. Instead, AL GNN leverages principles from analytic learning theory to formulate learning as a recursive least squares optimization process. It maintains and updates model knowledge analytically through closed form classifier updates and a regularized feature autocorrelation matrix. This design enables efficient one pass training for each task, and inherently preserves data privacy by avoiding historical sample storage. Extensive experiments on multiple dynamic graph classification benchmarks demonstrate that AL GNN achieves competitive or superior performance compared to existing methods. For instance, it improves average performance by 10% on CoraFull and reduces forgetting by over 30% on Reddit, while also reducing training time by nearly 50% due to its backpropagation free design.

Category
Computer Science:
Machine Learning (CS)