Score: 0

Explainable Transformer-CNN Fusion for Noise-Robust Speech Emotion Recognition

Published: December 20, 2025 | arXiv ID: 2512.18298v1

By: Sudip Chakrabarty, Pappu Bishwas, Rajdeep Chatterjee

Speech Emotion Recognition (SER) systems often degrade in performance when exposed to the unpredictable acoustic interference found in real-world environments. Additionally, the opacity of deep learning models hinders their adoption in trust-sensitive applications. To bridge this gap, we propose a Hybrid Transformer-CNN framework that unifies the contextual modeling of Wav2Vec 2.0 with the spectral stability of 1D-Convolutional Neural Networks. Our dual-stream architecture processes raw waveforms to capture long-range temporal dependencies while simultaneously extracting noise-resistant spectral features (MFCC, ZCR, RMSE) via a custom Attentive Temporal Pooling mechanism. We conducted extensive validation across four diverse benchmark datasets: RAVDESS, TESS, SAVEE, and CREMA-D. To rigorously test robustness, we subjected the model to non-stationary acoustic interference using real-world noise profiles from the SAS-KIIT dataset. The proposed framework demonstrates superior generalization and state-of-the-art accuracy across all datasets, significantly outperforming single-branch baselines under realistic environmental interference. Furthermore, we address the ``black-box" problem by integrating SHAP and Score-CAM into the evaluation pipeline. These tools provide granular visual explanations, revealing how the model strategically shifts attention between temporal and spectral cues to maintain reliability in the presence of complex environmental noise.

Category
Computer Science:
Sound