Score: 0

Embedded Safety-Aligned Intelligence via Differentiable Internal Alignment Embeddings

Published: December 20, 2025 | arXiv ID: 2512.18309v1

By: Harsh Rathva, Ojas Srivastava, Pruthwik Mishra

We introduce Embedded Safety-Aligned Intelligence (ESAI), a theoretical framework for multi-agent reinforcement learning that embeds alignment constraints directly into agents internal representations using differentiable internal alignment embeddings. Unlike external reward shaping or post-hoc safety constraints, internal alignment embeddings are learned latent variables that predict externalized harm through counterfactual reasoning and modulate policy updates toward harm reduction through attention and graph-based propagation. The ESAI framework integrates four mechanisms: differentiable counterfactual alignment penalties computed from soft reference distributions, alignment-weighted perceptual attention, Hebbian associative memory supporting temporal credit assignment, and similarity-weighted graph diffusion with bias mitigation controls. We analyze stability conditions for bounded internal embeddings under Lipschitz continuity and spectral constraints, discuss computational complexity, and examine theoretical properties including contraction behavior and fairness-performance tradeoffs. This work positions ESAI as a conceptual contribution to differentiable alignment mechanisms in multi-agent systems. We identify open theoretical questions regarding convergence guarantees, embedding dimensionality, and extension to high-dimensional environments. Empirical evaluation is left to future work.

Category
Computer Science:
Machine Learning (CS)