Score: 0

Prediction and Forecast of Short-Term Drought Impacts Using Machine Learning to Support Mitigation and Adaptation Efforts

Published: December 20, 2025 | arXiv ID: 2512.18522v1

By: Hatim M. E. Geli , Islam Omar , Mona Y. Elshinawy and more

Drought is a complex natural hazard that affects ecological and human systems, often resulting in substantial environmental and economic losses. Recent increases in drought severity, frequency, and duration underscore the need for effective monitoring and mitigation strategies. Predicting drought impacts rather than drought conditions alone offers opportunities to support early warning systems and proactive decision-making. This study applies machine learning techniques to link drought indices with historical drought impact records (2005:2024) to generate short-term impact forecasts. By addressing key conceptual and data-driven challenges regarding temporal scale and impact quantification, the study aims to improve the predictability of drought impacts at actionable lead times. The Drought Severity and Coverage Index (DSCI) and the Evaporative Stress Index (ESI) were combined with impact data from the Drought Impact Reporter (DIR) to model and forecast weekly drought impacts. Results indicate that Fire and Relief impacts were predicted with the highest accuracy, followed by Agriculture and Water, while forecasts for Plants and Society impacts showed greater variability. County and state level forecasts for New Mexico were produced using an eXtreme Gradient Boosting (XGBoost) model that incorporated both DSCI and ESI. The model successfully generated forecasts up to eight weeks in advance using the preceding eight weeks of data for most impact categories. This work supports the development of an Ecological Drought Information Communication System (EcoDri) for New Mexico and demonstrates the potential for broader application in similar drought-prone regions. The findings can aid stakeholders, land managers, and decision-makers in developing and implementing more effective drought mitigation and adaptation strategies.

Category
Computer Science:
Machine Learning (CS)