Score: 0

Modality-Dependent Memory Mechanisms in Cross-Modal Neuromorphic Computing

Published: December 21, 2025 | arXiv ID: 2512.18575v1

By: Effiong Blessing , Chiung-Yi Tseng , Somshubhra Roy and more

Memory-augmented spiking neural networks (SNNs) promise energy-efficient neuromorphic computing, yet their generalization across sensory modalities remains unexplored. We present the first comprehensive cross-modal ablation study of memory mechanisms in SNNs, evaluating Hopfield networks, Hierarchical Gated Recurrent Networks (HGRNs), and supervised contrastive learning (SCL) across visual (N-MNIST) and auditory (SHD) neuromorphic datasets. Our systematic evaluation of five architectures reveals striking modality-dependent performance patterns: Hopfield networks achieve 97.68% accuracy on visual tasks but only 76.15% on auditory tasks (21.53 point gap), revealing severe modality-specific specialization, while SCL demonstrates more balanced cross-modal performance (96.72% visual, 82.16% audio, 14.56 point gap). These findings establish that memory mechanisms exhibit task-specific benefits rather than universal applicability. Joint multi-modal training with HGRN achieves 94.41% visual and 79.37% audio accuracy (88.78% average), matching parallel HGRN performance through unified deployment. Quantitative engram analysis confirms weak cross-modal alignment (0.038 similarity), validating our parallel architecture design. Our work provides the first empirical evidence for modality-specific memory optimization in neuromorphic systems, achieving 603x energy efficiency over traditional neural networks.

Category
Computer Science:
Machine Learning (CS)