Score: 0

Uni-Neur2Img: Unified Neural Signal-Guided Image Generation, Editing, and Stylization via Diffusion Transformers

Published: December 21, 2025 | arXiv ID: 2512.18635v1

By: Xiyue Bai , Ronghao Yu , Jia Xiu and more

Generating or editing images directly from Neural signals has immense potential at the intersection of neuroscience, vision, and Brain-computer interaction. In this paper, We present Uni-Neur2Img, a unified framework for neural signal-driven image generation and editing. The framework introduces a parameter-efficient LoRA-based neural signal injection module that independently processes each conditioning signal as a pluggable component, facilitating flexible multi-modal conditioning without altering base model parameters. Additionally, we employ a causal attention mechanism accommodate the long-sequence modeling demands of conditional generation tasks. Existing neural-driven generation research predominantly focuses on textual modalities as conditions or intermediate representations, resulting in limited exploration of visual modalities as direct conditioning signals. To bridge this research gap, we introduce the EEG-Style dataset. We conduct comprehensive evaluations across public benchmarks and self-collected neural signal datasets: (1) EEG-driven image generation on the public CVPR40 dataset; (2) neural signal-guided image editing on the public Loongx dataset for semantic-aware local modifications; and (3) EEG-driven style transfer on our self-collected EEG-Style dataset. Extensive experimental results demonstrate significant improvements in generation fidelity, editing consistency, and style transfer quality while maintaining low computational overhead and strong scalability to additional modalities. Thus, Uni-Neur2Img offers a unified, efficient, and extensible solution for bridging neural signals and visual content generation.

Category
Computer Science:
CV and Pattern Recognition