Score: 0

Offline Reinforcement Learning for End-to-End Autonomous Driving

Published: December 21, 2025 | arXiv ID: 2512.18662v1

By: Chihiro Noguchi, Takaki Yamamoto

End-to-end (E2E) autonomous driving models that take only camera images as input and directly predict a future trajectory are appealing for their computational efficiency and potential for improved generalization via unified optimization; however, persistent failure modes remain due to reliance on imitation learning (IL). While online reinforcement learning (RL) could mitigate IL-induced issues, the computational burden of neural rendering-based simulation and large E2E networks renders iterative reward and hyperparameter tuning costly. We introduce a camera-only E2E offline RL framework that performs no additional exploration and trains solely on a fixed simulator dataset. Offline RL offers strong data efficiency and rapid experimental iteration, yet is susceptible to instability from overestimation on out-of-distribution (OOD) actions. To address this, we construct pseudo ground-truth trajectories from expert driving logs and use them as a behavior regularization signal, suppressing imitation of unsafe or suboptimal behavior while stabilizing value learning. Training and closed-loop evaluation are conducted in a neural rendering environment learned from the public nuScenes dataset. Empirically, the proposed method achieves substantial improvements in collision rate and route completion compared with IL baselines. Our code will be available at [URL].

Category
Computer Science:
Robotics