Score: 0

AsyncDiff: Asynchronous Timestep Conditioning for Enhanced Text-to-Image Diffusion Inference

Published: December 21, 2025 | arXiv ID: 2512.18675v1

By: Longhuan Xu, Feng Yin, Cunjian Chen

Text-to-image diffusion inference typically follows synchronized schedules, where the numerical integrator advances the latent state to the same timestep at which the denoiser is conditioned. We propose an asynchronous inference mechanism that decouples these two, allowing the denoiser to be conditioned at a different, learned timestep while keeping image update schedule unchanged. A lightweight timestep prediction module (TPM), trained with Group Relative Policy Optimization (GRPO), selects a more feasible conditioning timestep based on the current state, effectively choosing a desired noise level to control image detail and textural richness. At deployment, a scaling hyper-parameter can be used to interpolate between the original and de-synchronized timesteps, enabling conservative or aggressive adjustments. To keep the study computationally affordable, we cap the inference at 15 steps for SD3.5 and 10 steps for Flux. Evaluated on Stable Diffusion 3.5 Medium and Flux.1-dev across MS-COCO 2014 and T2I-CompBench datasets, our method optimizes a composite reward that averages Image Reward, HPSv2, CLIP Score and Pick Score, and shows consistent improvement.

Category
Computer Science:
CV and Pattern Recognition