RIS-Enabled Smart Wireless Environments: Fundamentals and Distributed Optimization
By: George C. Alexandropoulos , Kostantinos D. Katsanos , George Stamatelis and more
This chapter overviews the concept of Smart Wireless Environments (SWEs) motivated by the emerging technology of Reconfigurable Intelligent Surfaces (RISs). The operating principles and state-of-the-art hardware architectures of programmable metasurfaces are first introduced. Subsequently, key performance objectives and use cases of RIS-enabled SWEs, including spectral and energy efficiency, physical-layer security, integrated sensing and communications, as well as the emerging paradigm of over-the-air computing, are discussed. Focusing on the recent trend of Beyond-Diagonal (BD) RISs, two distributed designs of respective SWEs are presented. The first deals with a multi-user Multiple-Input Single-Output (MISO) system operating within the area of influence of a SWE comprising multiple BD-RISs. A hybrid distributed and fusion machine learning framework based on multi-branch attention-based convolutional Neural Networks (NNs), NN parameter sharing, and neuroevolutionary training is presented, which enables online mapping of channel realizations to the BD-RIS configurations as well as the multi-user transmit precoder. Performance evaluation results showcase that the distributedly optimized RIS-enabled SWE achieves near-optimal sum-rate performance with low online computational complexity. The second design focuses on the wideband interference MISO broadcast channel, where each base station exclusively controls one BD-RIS to serve its assigned group of users. A cooperative optimization framework that jointly designs the base station transmit precoders as well as the tunable capacitances and switch matrices of all metasurfaces is presented. Numerical results demonstrating the superior sum-rate performance of the designed RIS-enabled SWE for multi-cell MISO networks over benchmark schemes, considering non-cooperative configuration and conventional diagonal metasurfaces, are presented.
Similar Papers
Performance Evaluation of Dual RIS-Assisted Received Space Shift Keying Modulation
Information Theory
Directs wireless signals to specific places.
Data-Driven Deployment of Reconfigurable Intelligent Surfaces in Cellular Networks
Information Theory
Makes cell signals stronger with smart walls.
Beyond-Diagonal RIS Architecture Design and Optimization under Physics-Consistent Models
Signal Processing
Makes Wi-Fi signals stronger and reach farther.