A logic for default deontic reasoning
By: Mario Piazza, Andrea Sabatini
In many real-life settings, agents must navigate dynamic environments while reasoning under incomplete information and acting on a corpus of unstable, context-dependent, and often conflicting norms. We introduce a general, non-modal, proof-theoretic framework for deontic reasoning grounded in default logic. Its central feature is the notion of controlled sequent - a sequent annotated with sets of formulas (control sets) that prescribe what should or should not be entailed by the formulas in the antecedent. When combined with distinct extra-logical rules representing defaults and norms, these control sets record the conditions and constraints governing their applicability, thereby enabling local soundness checks for derived sequents. We prove that controlled sequent calculi satisfies admissibility of contraction and non-analytic cuts, and we establish their strong completeness with respect to credulous consequence in default theories and normative systems. Finally, we illustrate in depth how controlled sequent calculi provide a flexible and expressive basis for resolving deontic conflicts and capturing dynamic deontic notions via appropriate extra-logical rules.
Similar Papers
A General (Uniform) Relational Semantics for Sentential Logics
Logic in Computer Science
Makes many different logic systems work the same.
Modeling Deontic Modal Logic in the s(CASP) Goal-directed Predicate Answer Set Programming System
Artificial Intelligence
Solves logic puzzles about rules and what's allowed.
A Reduction of Input/Output Logics to SAT
Logic in Computer Science
Helps computers understand rules and what's allowed.