Score: 0

MDToC: Metacognitive Dynamic Tree of Concepts for Boosting Mathematical Problem-Solving of Large Language Models

Published: December 21, 2025 | arXiv ID: 2512.18841v1

By: Tung Duong Ta, Tim Oates

Potential Business Impact:

Helps computers do math problems correctly.

Business Areas:
EdTech Education, Software

Despite advances in mathematical reasoning capabilities, Large Language Models (LLMs) still struggle with calculation verification when using established prompting techniques. We present MDToC (Metacognitive Dynamic Tree of Concepts), a three-phase approach that constructs a concept tree, develops accuracy-verified calculations for each concept, and employs majority voting to evaluate competing solutions. Evaluations across CHAMP, MATH, and Game-of-24 benchmarks demonstrate our MDToC's effectiveness, with GPT-4-Turbo achieving 58.1\% on CHAMP, 86.6\% on MATH, and 85\% on Game-of-24 - outperforming GoT by 5\%, 5.4\%, and 4\% on all these tasks, respectively, without hand-engineered hints. MDToC consistently surpasses existing prompting methods across all backbone models, yielding improvements of up to 7.6\% over ToT and 6.2\% over GoT, establishing metacognitive calculation verification as a promising direction for enhanced mathematical reasoning.

Country of Origin
🇺🇸 United States

Page Count
12 pages

Category
Computer Science:
Computation and Language