Score: 0

The Erasure Illusion: Stress-Testing the Generalization of LLM Forgetting Evaluation

Published: December 22, 2025 | arXiv ID: 2512.19025v1

By: Hengrui Jia , Taoran Li , Jonas Guan and more

Machine unlearning aims to remove specific data influences from trained models, a capability essential for adhering to copyright laws and ensuring AI safety. Current unlearning metrics typically measure success by monitoring the model's performance degradation on the specific unlearning dataset ($D_u$). We argue that for Large Language Models (LLMs), this evaluation paradigm is insufficient and potentially misleading. Many real-world uses of unlearning--motivated by copyright or safety--implicitly target not only verbatim content in $D_u$, but also behaviors influenced by the broader generalizations the model derived from it. We demonstrate that LLMs can pass standard unlearning evaluation and appear to have ``forgotten'' the target knowledge, while simultaneously retaining strong capabilities on content that is semantically adjacent to $D_u$. This phenomenon indicates that erasing exact sentences does not necessarily equate to removing the underlying knowledge. To address this gap, we propose \name, an automated stress-testing framework that generates a surrogate dataset, $\tilde{D}_u$. This surrogate set is constructed to be semantically derived from $D_u$ yet sufficiently distinct in embedding space. By comparing unlearning metric scores between $D_u$ and $\tilde{D}_u$, we can stress-test the reliability of the metric itself. Our extensive evaluation across three LLM families (Llama-3-8B, Qwen2.5-7B, and Zephyr-7B-$β$), three distinct datasets, and seven standard metrics reveals widespread inconsistencies. We find that current metrics frequently overestimate unlearning success, failing to detect retained knowledge exposed by our stress-test datasets.

Category
Computer Science:
Cryptography and Security