GaussianImage++: Boosted Image Representation and Compression with 2D Gaussian Splatting
By: Tiantian Li , Xinjie Zhang , Xingtong Ge and more
Implicit neural representations (INRs) have achieved remarkable success in image representation and compression, but they require substantial training time and memory. Meanwhile, recent 2D Gaussian Splatting (GS) methods (\textit{e.g.}, GaussianImage) offer promising alternatives through efficient primitive-based rendering. However, these methods require excessive Gaussian primitives to maintain high visual fidelity. To exploit the potential of GS-based approaches, we present GaussianImage++, which utilizes limited Gaussian primitives to achieve impressive representation and compression performance. Firstly, we introduce a distortion-driven densification mechanism. It progressively allocates Gaussian primitives according to signal intensity. Secondly, we employ context-aware Gaussian filters for each primitive, which assist in the densification to optimize Gaussian primitives based on varying image content. Thirdly, we integrate attribute-separated learnable scalar quantizers and quantization-aware training, enabling efficient compression of primitive attributes. Experimental results demonstrate the effectiveness of our method. In particular, GaussianImage++ outperforms GaussianImage and INRs-based COIN in representation and compression performance while maintaining real-time decoding and low memory usage.
Similar Papers
RobustSplat++: Decoupling Densification, Dynamics, and Illumination for In-the-Wild 3DGS
CV and Pattern Recognition
Makes 3D pictures ignore moving things and changing light.
CompGS++: Compressed Gaussian Splatting for Static and Dynamic Scene Representation
Graphics
Makes 3D models smaller for sharing online.
Image-Conditioned 3D Gaussian Splat Quantization
CV and Pattern Recognition
Shrinks 3D scenes to tiny files, updates them later.