Score: 0

Generative Giants, Retrieval Weaklings: Why do Multimodal Large Language Models Fail at Multimodal Retrieval?

Published: December 22, 2025 | arXiv ID: 2512.19115v1

By: Hengyi Feng , Zeang Sheng , Meiyi Qiang and more

Despite the remarkable success of multimodal large language models (MLLMs) in generative tasks, we observe that they exhibit a counterintuitive deficiency in the zero-shot multimodal retrieval task. In this work, we investigate the underlying mechanisms that hinder MLLMs from serving as effective retrievers. With the help of sparse autoencoders (SAEs), we decompose MLLM output representations into interpretable semantic concepts to probe their intrinsic behavior. Our analysis reveals that the representation space of MLLMs is overwhelmingly dominated by textual semantics; the visual information essential for multimodal retrieval only constitutes a small portion. This imbalance is compounded by the heavy focus of MLLMs on bridging image-text modalities, which facilitates generation but homogenizes embeddings and finally diminishes the discriminative power required for multimodal retrieval. We further discover that the specific feature components that contribute most to the similarity computations for MLLMs are in fact distractors that actively degrade retrieval performance. Overall, our work provides the first in-depth interpretability analysis of MLLM representations in the context of multimodal retrieval and offers possible directions for enhancing the multimodal retrieval capabilities of MLLMs.

Category
Computer Science:
CV and Pattern Recognition