Score: 0

Semantic Communication for Rate-Limited Closed-Loop Distributed Communication-Sensing-Control Systems

Published: December 22, 2025 | arXiv ID: 2512.19177v1

By: Guangjin Pan , Zhixing Li , Ayça Özçelikkale and more

The growing integration of distributed integrated sensing and communication (ISAC) with closed-loop control in intelligent networks demands efficient information transmission under stringent bandwidth constraints. To address this challenge, this paper proposes a unified framework for goal-oriented semantic communication in distributed SCC systems. Building upon Weaver's three-level model, we establish a hierarchical semantic formulation with three error levels (L1: observation reconstruction, L2: state estimation, and L3: control) to jointly optimize their corresponding objectives. Based on this formulation, we propose a unified goal-oriented semantic compression and rate adaptation framework that is applicable to different semantic error levels and optimization goals across the SCC loop. A rate-limited multi-sensor LQR system is used as a case study to validate the proposed framework. We employ a GRU-based AE for semantic compression and a PPO-based rate adaptation algorithm that dynamically allocates transmission rates across sensors. Results show that the proposed framework effectively captures task-relevant semantics and adapts its resource allocation strategies across different semantic levels, thereby achieving level-specific performance gains under bandwidth constraints.

Category
Electrical Engineering and Systems Science:
Systems and Control