Machine Unlearning in the Era of Quantum Machine Learning: An Empirical Study
By: Carla Crivoi, Radu Tudor Ionescu
We present the first comprehensive empirical study of machine unlearning (MU) in hybrid quantum-classical neural networks. While MU has been extensively explored in classical deep learning, its behavior within variational quantum circuits (VQCs) and quantum-augmented architectures remains largely unexplored. First, we adapt a broad suite of unlearning methods to quantum settings, including gradient-based, distillation-based, regularization-based and certified techniques. Second, we introduce two new unlearning strategies tailored to hybrid models. Experiments across Iris, MNIST, and Fashion-MNIST, under both subset removal and full-class deletion, reveal that quantum models can support effective unlearning, but outcomes depend strongly on circuit depth, entanglement structure, and task complexity. Shallow VQCs display high intrinsic stability with minimal memorization, whereas deeper hybrid models exhibit stronger trade-offs between utility, forgetting strength, and alignment with retrain oracle. We find that certain methods, e.g. EU-k, LCA, and Certified Unlearning, consistently provide the best balance across metrics. These findings establish baseline empirical insights into quantum machine unlearning and highlight the need for quantum-aware algorithms and theoretical guarantees, as quantum machine learning systems continue to expand in scale and capability. We publicly release our code at: https://github.com/CrivoiCarla/HQML.
Similar Papers
Superior resilience to poisoning and amenability to unlearning in quantum machine learning
Quantum Physics
Quantum computers forget bad data better.
Quantum Machine Learning via Contrastive Training
Machine Learning (CS)
Teaches computers to learn from pictures without labels.
Intrinsic preservation of plasticity in continual quantum learning
Quantum Physics
Quantum computers learn forever without forgetting.