Score: 1

Binary Neural Network Implementation for Handwritten Digit Recognition on FPGA

Published: December 22, 2025 | arXiv ID: 2512.19304v1

By: Emir Devlet Ertörer, Cem Ünsalan

Potential Business Impact:

Makes computers recognize numbers faster and with less power.

Business Areas:
Field-Programmable Gate Array (FPGA) Hardware

Binary neural networks provide a promising solution for low-power, high-speed inference by replacing expensive floating-point operations with bitwise logic. This makes them well-suited for deployment on resource-constrained platforms such as FPGAs. In this study, we present a fully custom BNN inference accelerator for handwritten digit recognition, implemented entirely in Verilog without the use of high-level synthesis tools. The design targets the Xilinx Artix-7 FPGA and achieves real-time classification at 80\,MHz with low power consumption and predictable timing. Simulation results demonstrate 84\% accuracy on the MNIST test set and highlight the advantages of manual HDL design for transparent, efficient, and flexible BNN deployment in embedded systems. The complete project including training scripts and Verilog source code are available at GitHub repo for reproducibility and future development.

Country of Origin
🇹🇷 Turkey

Page Count
13 pages

Category
Computer Science:
Hardware Architecture