Binary Kernel Logistic Regression: a sparsity-inducing formulation and a convergent decomposition training algorithm
By: Antonio Consolo, Andrea Manno, Edoardo Amaldi
Kernel logistic regression (KLR) is a widely used supervised learning method for binary and multi-class classification, which provides estimates of the conditional probabilities of class membership for the data points. Unlike other kernel methods such as Support Vector Machines (SVMs), KLRs are generally not sparse. Previous attempts to deal with sparsity in KLR include a heuristic method referred to as the Import Vector Machine (IVM) and ad hoc regularizations such as the $\ell_{1/2}$-based one. Achieving a good trade-off between prediction accuracy and sparsity is still a challenging issue with a potential significant impact from the application point of view. In this work, we revisit binary KLR and propose an extension of the training formulation proposed by Keerthi et al., which is able to induce sparsity in the trained model, while maintaining good testing accuracy. To efficiently solve the dual of this formulation, we devise a decomposition algorithm of Sequential Minimal Optimization type which exploits second-order information, and for which we establish global convergence. Numerical experiments conducted on 12 datasets from the literature show that the proposed binary KLR approach achieves a competitive trade-off between accuracy and sparsity with respect to IVM, $\ell_{1/2}$-based regularization for KLR, and SVM while retaining the advantages of providing informative estimates of the class membership probabilities.
Similar Papers
$L_1$-norm Regularized Indefinite Kernel Logistic Regression
Machine Learning (Stat)
Finds patterns in data better and shows why.
Sparse Multiple Kernel Learning: Alternating Best Response and Semidefinite Relaxations
Machine Learning (Stat)
Chooses best tools to make computer learning better.
Sparse Multiple Kernel Learning: Alternating Best Response and Semidefinite Relaxations
Machine Learning (Stat)
Chooses best tools for smarter computer learning.