Real-Time Streamable Generative Speech Restoration with Flow Matching
By: Simon Welker , Bunlong Lay , Maris Hillemann and more
Diffusion-based generative models have greatly impacted the speech processing field in recent years, exhibiting high speech naturalness and spawning a new research direction. Their application in real-time communication is, however, still lagging behind due to their computation-heavy nature involving multiple calls of large DNNs. Here, we present Stream.FM, a frame-causal flow-based generative model with an algorithmic latency of 32 milliseconds (ms) and a total latency of 48 ms, paving the way for generative speech processing in real-time communication. We propose a buffered streaming inference scheme and an optimized DNN architecture, show how learned few-step numerical solvers can boost output quality at a fixed compute budget, explore model weight compression to find favorable points along a compute/quality tradeoff, and contribute a model variant with 24 ms total latency for the speech enhancement task. Our work looks beyond theoretical latencies, showing that high-quality streaming generative speech processing can be realized on consumer GPUs available today. Stream.FM can solve a variety of speech processing tasks in a streaming fashion: speech enhancement, dereverberation, codec post-filtering, bandwidth extension, STFT phase retrieval, and Mel vocoding. As we verify through comprehensive evaluations and a MUSHRA listening test, Stream.FM establishes a state-of-the-art for generative streaming speech restoration, exhibits only a reasonable reduction in quality compared to a non-streaming variant, and outperforms our recent work (Diffusion Buffer) on generative streaming speech enhancement while operating at a lower latency.
Similar Papers
Real-Time Streaming Mel Vocoding with Generative Flow Matching
Audio and Speech Processing
Makes computer voices sound more real, faster.
WaveFM: A High-Fidelity and Efficient Vocoder Based on Flow Matching
Sound
Makes computer voices sound more real and faster.
Shortcut Flow Matching for Speech Enhancement: Step-Invariant flows via single stage training
Sound
Cleans up noisy audio much faster.