Score: 0

FusionNet: Physics-Aware Representation Learning for Multi-Spectral and Thermal Data via Trainable Signal-Processing Priors

Published: December 22, 2025 | arXiv ID: 2512.19504v1

By: Georgios Voulgaris

Modern deep learning models operating on multi-modal visual signals often rely on inductive biases that are poorly aligned with the physical processes governing signal formation, leading to brittle performance under cross-spectral and real-world conditions. In particular, approaches that prioritise direct thermal cues struggle to capture indirect yet persistent environmental alterations induced by sustained heat emissions. This work introduces a physics-aware representation learning framework that leverages multi-spectral information to model stable signatures of long-term physical processes. Specifically, a geological Short Wave Infrared (SWIR) ratio sensitive to soil property changes is integrated with Thermal Infrared (TIR) data through an intermediate fusion architecture, instantiated as FusionNet. The proposed backbone embeds trainable differential signal-processing priors within convolutional layers, combines mixed pooling strategies, and employs wider receptive fields to enhance robustness across spectral modalities. Systematic ablations show that each architectural component contributes to performance gains, with DGCNN achieving 88.7% accuracy on the SWIR ratio and FusionNet reaching 90.6%, outperforming state-of-the-art baselines across five spectral configurations. Transfer learning experiments further show that ImageNet pretraining degrades TIR performance, highlighting the importance of modality-aware training for cross-spectral learning. Evaluated on real-world data, the results demonstrate that combining physics-aware feature selection with principled deep learning architectures yields robust and generalisable representations, illustrating how first-principles signal modelling can improve multi-spectral learning under challenging conditions.

Category
Computer Science:
CV and Pattern Recognition