Score: 0

Beyond Language Boundaries: Uncovering Programming Language Families for Code Language Models

Published: December 22, 2025 | arXiv ID: 2512.19509v1

By: Shangbo Yun , Xiaodong Gu , Jianghong Huang and more

Potential Business Impact:

Teaches computers to understand many coding languages better.

Business Areas:
Natural Language Processing Artificial Intelligence, Data and Analytics, Software

The rapid proliferation of diverse programming languages presents both opportunities and challenges for developing multilingual code LLMs. While existing techniques often train code LLMs by simply aggregating multilingual code data, few explore the deeper relationships between programming languages(PLs) and how such relationships can be utilized to optimize the training and inference of code LLMs. In this work, we investigate 2 fundamental questions: 1) What are the deep linguistic relationships among PLs? and 2) How can these relationships be leveraged to improve multilingual code LLMs? We propose an embedding-based framework to uncover the latent families of PLs. Our approach begins by defining 21 primary linguistic features of programming languages, such as variable definition, control structures, and method declarations, and then employs LLMs to generate feature-aligned code samples across multiple languages. By embedding these semantically parallel code snippets from 19 languages, we construct a similarity matrix and perform hierarchical clustering to uncover inherent language relationships. Our analysis reveals clear hierarchical structures among programming languages. Closely related languages form well-defined clusters (e.g., C, C++, Java, and Swift group together), while Go exhibits as a central language with the highest cross-language similarity. Building on the uncovered language families, we propose three strategies to enhance multilingual LLM training: transfer learning across linguistically related languages, linguistic proximity-guided curriculum learning, and centroid-based intermediary code translation. Experiments on 4 code intelligence tasks demonstrate that our methods significantly improve multilingual LLM performance. This work offers a universal perspective on programming languages and advances more effective strategies for multilingual code LLM training.

Country of Origin
🇨🇳 China

Page Count
21 pages

Category
Computer Science:
Software Engineering