Score: 0

A Convolutional Neural Deferred Shader for Physics Based Rendering

Published: December 22, 2025 | arXiv ID: 2512.19522v1

By: Zhuo He , Yingdong Ru , Qianying Liu and more

Recent advances in neural rendering have achieved impressive results on photorealistic shading and relighting, by using a multilayer perceptron (MLP) as a regression model to learn the rendering equation from a real-world dataset. Such methods show promise for photorealistically relighting real-world objects, which is difficult to classical rendering, as there is no easy-obtained material ground truth. However, significant challenges still remain the dense connections in MLPs result in a large number of parameters, which requires high computation resources, complicating the training, and reducing performance during rendering. Data driven approaches require large amounts of training data for generalization; unbalanced data might bias the model to ignore the unusual illumination conditions, e.g. dark scenes. This paper introduces pbnds+: a novel physics-based neural deferred shading pipeline utilizing convolution neural networks to decrease the parameters and improve the performance in shading and relighting tasks; Energy regularization is also proposed to restrict the model reflection during dark illumination. Extensive experiments demonstrate that our approach outperforms classical baselines, a state-of-the-art neural shading model, and a diffusion-based method.

Category
Computer Science:
CV and Pattern Recognition