Possibilistic Inferential Models for Post-Selection Inference in High-Dimensional Linear Regression
By: Yaohui Lin
Valid uncertainty quantification after model selection remains challenging in high-dimensional linear regression, especially within the possibilistic inferential model (PIM) framework. We develop possibilistic inferential models for post-selection inference based on a regularized split possibilistic construction (RSPIM) that combines generic high-dimensional selectors with PIM validification through sample splitting. A first subsample is used to select a sparse model; ordinary least-squares refits on an independent inference subsample yield classical t/F pivots, which are then turned into consonant plausibility contours. In Gaussian linear models this leads to coor-dinatewise intervals with exact finite-sample strong validity conditional on the split and selected model, uniformly over all selectors that use only the selection data. We further analyze RSPIM in a sparse p >> n regime under high-level screening conditions, develop orthogonalized and bootstrap-based extensions for low-dimensional targets with high-dimensional nuisance, and study a maxitive multi-split aggregation that stabilizes inference across random splits while preserving strong validity. Simulations and a riboflavin gene-expression example show that calibrated RSPIM intervals are well behaved under both Gaussian and heteroskedastic errors and are competitive with state-of-the-art post-selection methods, while plausibility contours provide transparent diagnostics of post-selection uncertainty.
Similar Papers
Valid and efficient possibilistic structure learning in Gaussian linear regression
Methodology
Finds the best way to explain data.
Sparse Bayesian Partially Identified Models for Sequence Count Data
Methodology
Finds real changes in tiny cell parts.
Possibilistic inferential models: a review
Statistics Theory
Makes computer guesses more trustworthy and flexible.