Score: 0

A Declarative Language for Building And Orchestrating LLM-Powered Agent Workflows

Published: December 22, 2025 | arXiv ID: 2512.19769v1

By: Ivan Daunis

Building deployment-ready LLM agents requires complex orchestration of tools, data sources, and control flow logic, yet existing systems tightly couple agent logic to specific programming languages and deployment models. We present a declarative system that separates agent workflow specification from implementation, enabling the same pipeline definition to execute across multiple backend languages (Java, Python, Go) and deployment environments (cloud-native, on-premises). Our key insight is that most agent workflows consist of common patterns -- data serialization, filtering, RAG retrieval, API orchestration -- that can be expressed through a unified DSL rather than imperative code. This approach transforms agent development from application programming to configuration, where adding new tools or fine-tuning agent behaviors requires only pipeline specification changes, not code deployment. Our system natively supports A/B testing of agent strategies, allowing multiple pipeline variants to run on the same backend infrastructure with automatic metric collection and comparison. We evaluate our approach on real-world e-commerce workflows at PayPal, processing millions of daily interactions. Our results demonstrate 60% reduction in development time, and 3x improvement in deployment velocity compared to imperative implementations. The language's declarative approach enables non-engineers to modify agent behaviors safely, while maintaining sub-100ms orchestration overhead. We show that complex workflows involving product search, personalization, and cart management can be expressed in under 50 lines of DSL compared to 500+ lines of imperative code.

Category
Computer Science:
Software Engineering