Score: 0

Causal Inference with the "Napkin Graph"

Published: December 22, 2025 | arXiv ID: 2512.19861v1

By: Anna Guo, David Benkeser, Razieh Nabi

Unmeasured confounding can render identification strategies based on adjustment functionals invalid. We study the "Napkin graph", a causal structure that encapsulates patterns of M-bias, instrumental variables, and the classical back-door and front-door models within a single graphical framework, yet requires a nonstandard identification strategy: the average treatment effect is expressed as a ratio of two g-formulas. We develop novel estimators for this functional, including doubly robust one-step and targeted minimum loss-based estimators that remain asymptotically linear when nuisance functions are estimated at slower-than-parametric rates using machine learning. We also show how a generalized independence restriction encoded by the Napkin graph, known as a Verma constraint, can be exploited to improve efficiency, illustrating more generally how such constraints in hidden variable DAGs can inform semiparametric inference. The proposed methods are validated through simulations and applied to the Finnish Life Course study to estimate the effect of educational attainment on income. An accompanying R package, napkincausal, implements all proposed procedures.

Category
Statistics:
Methodology