The Seismic Wavefield Common Task Framework
By: Alexey Yermakov , Yue Zhao , Marine Denolle and more
Seismology faces fundamental challenges in state forecasting and reconstruction (e.g., earthquake early warning and ground motion prediction) and managing the parametric variability of source locations, mechanisms, and Earth models (e.g., subsurface structure and topography effects). Addressing these with simulations is hindered by their massive scale, both in synthetic data volumes and numerical complexity, while real-data efforts are constrained by models that inadequately reflect the Earth's complexity and by sparse sensor measurements from the field. Recent machine learning (ML) efforts offer promise, but progress is obscured by a lack of proper characterization, fair reporting, and rigorous comparisons. To address this, we introduce a Common Task Framework (CTF) for ML for seismic wavefields, starting with three distinct wavefield datasets. Our CTF features a curated set of datasets at various scales (global, crustal, and local) and task-specific metrics spanning forecasting, reconstruction, and generalization under realistic constraints such as noise and limited data. Inspired by CTFs in fields like natural language processing, this framework provides a structured and rigorous foundation for head-to-head algorithm evaluation. We illustrate the evaluation procedure with scores reported for two of the datasets, showcasing the performance of various methods and foundation models for reconstructing seismic wavefields from both simulated and real-world sensor measurements. The CTF scores reveal the strengths, limitations, and suitability for specific problem classes. Our vision is to replace ad hoc comparisons with standardized evaluations on hidden test sets, raising the bar for rigor and reproducibility in scientific ML.
Similar Papers
Common Task Framework For a Critical Evaluation of Scientific Machine Learning Algorithms
Computational Engineering, Finance, and Science
Makes science computers more trustworthy and fair.
Common Task Framework For a Critical Evaluation of Scientific Machine Learning Algorithms
Computational Engineering, Finance, and Science
Makes science computers more trustworthy and fair.
Common Task Framework For a Critical Evaluation of Scientific Machine Learning Algorithms
Computational Engineering, Finance, and Science
Makes science computer tests fair and clear.