Semiparametric KSD test: unifying score and distance-based approaches for goodness-of-fit testing
By: Zhihan Huang, Ziang Niu
Goodness-of-fit (GoF) tests are fundamental for assessing model adequacy. Score-based tests are appealing because they require fitting the model only once under the null. However, extending them to powerful nonparametric alternatives is difficult due to the lack of suitable score functions. Through a class of exponentially tilted models, we show that the resulting score-based GoF tests are equivalent to the tests based on integral probability metrics (IPMs) indexed by a function class. When the class is rich, the test is universally consistent. This simple yet insightful perspective enables reinterpretation of classical distance-based testing procedures-including those based on Kolmogorov-Smirnov distance, Wasserstein-1 distance, and maximum mean discrepancy-as arising from score-based constructions. Building on this insight, we propose a new nonparametric score-based GoF test through a special class of IPM induced by kernelized Stein's function class, called semiparametric kernelized Stein discrepancy (SKSD) test. Compared with other nonparametric score-based tests, the SKSD test is computationally efficient and accommodates general nuisance-parameter estimators, supported by a generic parametric bootstrap procedure. The SKSD test is universally consistent and attains Pitman efficiency. Moreover, SKSD test provides simple GoF tests for models with intractable likelihoods but tractable scores with the help of Stein's identity and we use two popular models, kernel exponential family and conditional Gaussian models, to illustrate the power of our method. Our method achieves power comparable to task-specific normality tests such as Anderson-Darling and Lilliefors, despite being designed for general nonparametric alternatives.
Similar Papers
Fast and Scalable Score-Based Kernel Calibration Tests
Machine Learning (Stat)
Checks if computer predictions are trustworthy.
Nonparametric Block Bootstrap Kolmogorov-Smirnov Goodness-of-Fit Test
Methodology
Fixes a math test for tricky, connected numbers.
The Kolmogorov-Smirnov Statistic Revisited
Statistics Theory
Tests if data groups are the same.